Another note on the inequality between geometric and p ‐generalized arithmetic mean
نویسندگان
چکیده
A central limit theorem and a moderate deviations principle for the ratio of geometric p-generalized arithmetic mean are shown. Also Berry–Esseen-type upper bound on rate convergence in is proved. This has implications probabilistic version question whether inequality between can be reversed or improved up to multiplicative constants. The involved random vectors we study belong class distributions ℓ p n -ball introduced by Barthe, Guédon, Mendelson Naor. results complement previous theorems Kabluchko, Prochno Vysotsky.
منابع مشابه
A Relationship between Subpermanents and the Arithmetic-Geometric Mean Inequality
Using the arithmetic-geometric mean inequality, we give bounds for k-subpermanents of nonnegative n × n matrices F. In the case k = n, we exhibit an n 2-set S whose arithmetic and geometric means constitute upper and lower bounds for per(F)/n!. We offer sharpened versions of these bounds when F has zero-valued entries.
متن کاملBest Upper Bounds Based on the Arithmetic-geometric Mean Inequality
In this paper we obtain a best upper bound for the ratio of the extreme values of positive numbers in terms of the arithmetic-geometric means ratio. This has immediate consequences for condition numbers of matrices and the standard deviation of equiprobable events. It also allows for a refinement of Schwarz’s vector inequality.
متن کاملA Note on the First Geometric-Arithmetic Index of Hexagonal Systems and Phenylenes
The first geometric-arithmetic index was introduced in the chemical theory as the summation of 2 du dv /(du dv ) overall edges of the graph, where du stand for the degree of the vertex u. In this paper we give the expressions for computing the first geometric-arithmetic index of hexagonal systems and phenylenes and present new method for describing hexagonal system by corresponding a simple g...
متن کاملAn Arithmetic-Geometric-Harmonic Mean Inequality Involving Hadamard Products
Given matrices of the same size, A = a ij ] and B = b ij ], we deene their Hadamard Product to be A B = a ij b ij ]. We show that if x i > 0 and q p 0 then the n n matrices q j # are positive deenite and relate these facts to some matrix valued arithmetic-geometric-harmonic mean inequalities-some of which involve Hadamard products and others unitarily invariant norms. It is known that if A is p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Nachrichten
سال: 2021
ISSN: ['1522-2616', '0025-584X']
DOI: https://doi.org/10.1002/mana.202000238